
Programming Environment

New User Webinar

Craig Steffen

February 11, 2015

Programming Environment

2Presentation Title

Languages

C

C++

Fortran

Python

UPC

Compilers

GNU

Cray

Compiling

Environment

(CCE)

Programming

Models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

Shared Memory

• OpenMP 3.0

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

Cray developed

Under development

Licensed ISV SW

IO Libraries

HDF5

ADIOS

NetCDF

Resource

Manager

Tools

Modules

Optimized

Scientific

Libraries

ScaLAPACK

BLAS (libgoto)

LAPACK

Iterative
Refinement

Toolkit

Cray Adaptive

FFTs (CRAFFT)

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

Environment setup

Debugging Support

Tools

• Fast Track
Debugger
(CCE w/ DDT)

• Abnormal
Termination
Processing

STAT

Cray Comparative

Debugger#

3rd party packaging

NCSA supported

Cray added value to 3rd party

Debuggers

Allinea DDT

lgdb

Performance

Analysis

Cray
Performance

Monitoring and
Analysis Tool

PerfSuite

Tau

Cray Linux Environment (CLE)/SUSE Linux

Visualization

VisIt

Paraview

YT

PAPI Prog. Env.

Eclipse

Traditional

Data Transfer

GO

HPSS

Intel

Modules

• The user environment is controlled using the modules

environment management system.

• The module utility helps you quickly identify software that

is available on the system and makes it easier to modify

your environment.

• List all available modules and versions:

• module avail

• List all modules currently loaded

• module list

Modules (cont.)

• Modules may be loaded, unloaded, or swapped either on a
command line or in $HOME/.bashrc (.cshrc for csh) shell
startup file. E.g.

• module load craype-hugepages2M

• Module load ddt

• swap (different version or different compiler)

• change module version:

• module swap XYZ/1.0 XYZ/1.1

• change compiler:

• module swap PrgEnv-gnu PrgEnv-cray

(PrgEnv-* modules are special; explained later)

Using Modules In (bash) Job Scripts

• You must run the initialization command first:

• . /opt/modules/default/init/bash

• before any “module X Y” commands

Default Module List Is Expected

• good commands to use:

• module load XXX

• module unload YYY (if it conflicts with something
you need)

• module swap

• Do NOT

• module purge

(this makes a mess of your environment and makes
it very difficult for us to help you)

Module Versions

• Try to avoid version dependency

• System typically has:

• default version of package

• newer stable version of package

• a couple of older versions

• older package versions are culled periodically

• If you DO have a version dependency, please let

us know (submit a ticket: old default 1.2.3 works,

new default 1.2.5 does not)

Blue Waters Programming Environments

Four compiler sets available, managed by

PrgEnv-* module:

• Cray Programming Environment (default)

• PGI programming environment

• Gnu programming environment

• Intel programming environment

8

Blue Waters Programming Environments

• Programming Environments managed through the module
utility.

• Modules help ensure that your environment is always
configured properly. Paths, libraries, etc, will be properly set by
the chosen programing environment using module.

• Compiler wrappers:
ftn (for fortran) cc (for C) and CC (for C++)

enable the use of desired compilers, and their corresponding include
files, library paths etc.

• With PrgEnv-cray, for instance:
• cc points to the Cray C compiler

• CC points to the Cray C++ compiler

• ftn points to the Cray Fortran compiler

9

Use Wrapped Compilers

(for MPI production multinode codes)

• Cross-compile environment (build on login, run on

compute node)

• Use cc, CC, ftn

• do not use: gcc, gfortran (for instance)

• You’ll do a lot of:

• CC=cc

• CXX=CC

• MPICC=cc

• The big exception is nvcc for CUDA-C programming

• (linking is done with CC)

Using Wrapper Compilers

• Name is always cc,CC,ftn

• Options reflect underlying compiler (which

PrgEnv-* module that’s loaded

• For instance, -Wall (gcc option) works for cc when

PrgEnv-gnu is loaded, not when PrgEnv-cray is

• “man cc” for general options

• “man gcc” for specific options

Compiler Wrappers and Modules Work Together:

(Especially for experts)

• Modules configure internal (invisible to the user)
calls to -l and -L for system libraries within

compiler wrappers

• you should not use –L and –l for system

libraries (that would create path and thus version

dependencies)

• you will typically use -I and –L and –l for your

own, local libraries

Compilers are NOT versioned by PrgEnv-*

• With PrgEnv-cray loaded:

Cray compiler version set by version of the cce module

(“Cray Compiler Environment”)

• Prgenv-gnu: compiler versioned by “gcc” module

• PrgEnv-pgi: compiler versioned by “pgi” module

• PrgEnv-intel: compile versioned by “intel” module

Programming Models

• MPI

• OpenMP

• Hybrid Programming: MPI + OpenMP

• Partitioned Global Address Space (PGAS) paradigm

• CAF

• UPC

• Charm++

MPI

• Compiling and linking is performed using wrapper scripts

ftn, cc, and CC for source code written in Fortran, C, and

C++, respectively.

• Wrappers invoke the appropriate compiler based on

the current Programming Environment

• There is NO “mpicc” on Blue Waters. The compiler

wrappers already have that functionality built in.

• Wrappers automatically link in a wide variety of libraries as

necessary, including MPI (for instance, -lmpi is not required

and will cause the link step to fail).

OpenMP

• a shared memory programming paradigm on the

node

• Cray compilers:

• Default enabled: -h thread2

• GNU compilers:

• -fopenmp

• PGI compilers:

• -mp

MPI+OpenMP

• MPI+OpenMP is an efficient way to exploit multicore processors on

Blue Waters.

• Each OpenMP thread typically runs on one compute core (i.e.

maximum 32 on BW).

• Thread safety

• Required to specify the desired level of thread support

• set environment variable MPICH_MAX_THREAD_SAFETY to

different values to increase the thread safety.

• MPI_THREAD_SINGLE (default)

• MPI_THREAD_FUNNELED

• MPI_THREAD_SERIALIZED

• MPI_THREAD_MULTIPLE

Two MPI Tasks on a Compute Unit

("Dual-Stream Mode")
• An MPI task is pinned to each integer

unit

• Each integer unit has exclusive access

to an integer scheduler, integer

pipelines and L1 Dcache

• The 256-bit FP unit, instruction fetch,

and the L2 Cache are shared between

the two integer units

• 256-bit AVX instructions are dynamically

executed as two 128-bit instructions if

the 2nd FP unit is busy

• When to use

• Code is highly scalable to a large

number of MPI ranks

• Code can run with a 2GB per task

memory footprint

• Code is not well vectorized
Shared L2 Cache

Fetch

Decode

FP Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

MPI Task 0 Shared
Components

MPI Task 1

One MPI Task on a Compute Unit

("Single Stream Mode")
• Only one integer unit is used per

compute unit

• This unit has exclusive access to the

256-bit FP unit and is capable of 8 FP

results per clock cycle

• The unit has twice the memory

capacity and memory bandwidth in this

mode

• The L2 cache is effectively twice as

large

• The peak of the chip is not reduced

• When to use

• Code is highly vectorized and makes

use of AVX instructions

• Code benefits from higher per task

memory size and bandwidth

Shared L2 Cache

Fetch

Decode

FP
Scheduler

1
2

8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2

8
-b

it
 F

M
A

C

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Integer
Scheduler

Integer

Scheduler

Integer

Core 0

Integer

Core 1

Idle
Components

Active
Components

One MPI Task per compute unit with Two

OpenMP Threads ("Dual-Stream Mode")
• An MPI task is pinned to a compute

unit

• OpenMP is used to run a thread on

each integer unit

• Each OpenMP thread has exclusive

access to an integer scheduler, integer

pipelines and L1 Dcache

• The 256-bit FP unit and the L2 Cache

is shared between the two threads

• 256-bit AVX instructions are

dynamically executed as two 128-bit

instructions if the 2nd FP unit is busy

• When to use

• Code needs a large amount of memory

per MPI rank

• Code has OpenMP parallelism at each

MPI rank

OpenMP
Thread 1

Shared L2 Cache

Fetch

Decode

FP Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int
Scheduler

Int

Scheduler

Int Core 0 Int Core 1

OpenMP
Thread 0

Shared
Components

Running in Dual or Single-Stream modes

• Dual-Stream mode is the current default mode. General use does not require any options. CPU

affinity is set automatically by ALPS.

• Single-Stream mode is specified through the -j aprun option. Specifying -j 1 tells aprun to place 1

process or thread on each compute unit.

• When OpenMP threads are used, the -d option must be used to specify how many threads will be

spawned per MPI process. See the aprun(1) man page for more details. The aprun –N option may

be used to specify the number of MPI processes to assign per compute node or -S to specify the

number of processes per Interlagos die. Also, the environment variable $OMP_NUM_THREADS

needs to be set to the correct number of threads per process.

• For example, the following spawns 4 MPI processes, each with 8 threads, using 1 thread per

compute unit.

• OMP_NUM_THREADS=8

• aprun -n 4 -d 8 -j 1 ./a.out

NUMA Considerations

• Each Interlagos socket has 2 NUMA memory domains, each with 4 Bulldozer

Modules. Access to memory located in a different NUMA domain (even

within the same node) is slower than access to your own NUMA domain.

• XE nodes (2 sockets) have 4 NUMA domains, XK (1 socket) have 2

• OpenMP performance is usually better when all threads in a process execute

in the same NUMA domain. For the Dual-Stream case, 8 CPUs share a

NUMA domain, while in Single-Stream mode 4 CPUs share a NUMA domain.

Using a larger number of OpenMP threads per MPI process than these

values may result in lower performance due to cross-domain memory access.

• When running 1 process with threads over the NUMA domains, it’s critical to

initialize (not just allocate) memory from the thread that will use it in order to

avoid NUMA side effects.

• PGAS languages (UPC & Coarray Fortran) fully

optimized and integrated into the compiler

• UPC 1.2 and Fortran 2008 coarray support

• No preprocessor involved

• Target the network appropriately

• Full debugger support with Allinea’s DDT

PGAS

Coarray Fortran (CAF)

• Coarray Fortran is a small set of extensions to

Fortran for Single Program Multiple Data (SPMD)

parallel programming

• included in the current standard (Fortran 2008).

• Cray Fortran: -h caf (on by default)

• Gfortran:

• -fcoarray=<keyword>

UPC

• An extension of C that supports a single shared,

partitioned global address space

• UPC is fully integrated into the Cray C compiler,

to enable:

• -h upc

Charm++

• Charm++ provides processor virtualization

• Object oriented C++ programming

• Migratable object-based dynamic load balancing

• Fault tolerance and many other features

• To build Charm++ on BW

• ./build charm++ gni-crayxe-hugepages-smp

Note: Cray aprun teminology

• “man aprun” for full manual and options for

running parallel codes

• Cray calls an MPI rank a “PE” (“processing

element”)

• The next slide(s) reflect Cray’s terminology

Setting Process Affinity – aprun options
Common aprun options are:

•-n: Number of processing elements PEs for the application

•-N: Number of PEs to place per node

•-S: Number of PEs to place per NUMA node.

•-d: Number of CPU cores required for each PE and its threads

•-cc: Binds PEs to CPU cores.

•-r: Number of CPU cores to be used for core specialization

•-j: Dual or single stream/integer cores to use for a PE

•-ss: Enables strict memory containment per NUMA node

(see “man aprun” for full details)

28Presentation Title

must

match #

of nodes

Blue Waters Debugging Tools

• DDT – A parallel debugger from Allinea Software, can be used for

scalar, multi-threaded and large-scale parallel applications.

• ATP - Abnormal Termination Processing from Cray, a utility for

debugging. If an application takes a system trap, ATP performs

analysis on the dying application.

• STAT - The Stack Trace Analysis Tool gathers and merges stack

traces from a parallel application’s processes. The tool produces call

graphs. STAT is also capable of gathering stack traces with more fine-

grained information, such as the program counter or the source file

and line number of each frame

29

Blue Waters Debugging Tool - DDT

How to use:

• Set up for x11 forwarding: ssh -Y bw.ncsa.illinois.edu

• Complile with the –g option: e.g. ftn -g test.f90 -o test

• Starting a DDT debugging section with one of the following:

 submit a job through DDT

 manually launch a program with DDT

 attach DDT to a running program

 start a debug session from inside an interactive job

• The first three begin by launching ddt using the commands:

 Module load ddt

 ddt

• More details in the ddt section on the portal

30

Blue Waters Debugging Tool - ATP

To use ATP for program abnormal terminations, do:

• Load atp module by ``module load atp’’

• Recompile and link the code

• Modify job script as follows:

module load atp

export ATP_ENABLED=1 # or setenv ATP_ENABLED 1

aprun …

• Submit the job

• If the application terminates, use gdb or stat-view to examine the

resulting diagnostic files

• (details on portal)

31

Debugging Tool: STAT

• Stack Trace Analysis

• (very sparse) page on portal

• If you need to use STAT, please contact

help+bw@ncsa.Illinois.edu

